金沙误乐城

新闻中心

金沙误乐城手机版


Acad Emerg Med:大数据模型可改善对住院患者的预后预测


2016年2月22日


在美国有超过一半的院内死亡都与严重感染或败血症直接相关,近日来自耶鲁大学等机构的研究者开发了一种预测模型,其可以利用当地病人的大数据,并且利用机器学习方法来帮助鉴别那些有疾病风险的患者,这种新型方法比当前的临床实践方法要好,该研究发表在国际杂志Academic Emergency Medicine上。

当前急诊医生可以利用简单的计算器或评分系统来作为临床的决策准则帮助确定哪些患者更易因院内败血症而死亡,然而这些方法常常并不能成功鉴别出高风险的病人,因为这仅仅是基于有限的信息,而这并不能够计算出数据的复杂性,其仅仅是利用不同病人群体而开发出的。

本文中,科学家开发的这种新型模型就利用了来自当地病人的电子健康记录的大量数据,这种名为“随机森林模型”的方法就可以对来自病人的数据进行处理分析并且做出一定的预测;这种新型的大数据分析方法远胜于当前的模型,而且可以潜在地在每5000份严重的败血症患者中进行分类出200-300名患者。

R. Andrew Taylor博士指出,利用机器学习技术并且结合大量的突变(超过500个突变),我们就可以开发出一种新型模型来潜在帮助更好地预测院内患者的败血症死亡率。研究人员希望后期在促进这种大数据分析模型使用的时候,同时还可以帮助对患者进行实时地监测,研究者的目的就是获取患者的数据,并且开发出新型的学习健康系统,即开发出预测性的模型来应用于改善患者的健康之中。